所在位置: 首页 > 科学研究 > 学术报告 > 正文 >
物理学科Seminar第572讲:朱通(2021年11月25日19:00)
发布人:  张晓智  发布时间:  2021-11-23  浏览量:   关闭

报告题目 (Title) Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method(自动生成神经网络势能面:增强自组织增量神经网络深度势能方法)

报告人 (Speaker):朱通 副教授(华东师范大学&上海纽约大学)

报告时间 (Time):2021年11月25日(周四) 19:00

报告地点 (Place): 线上腾讯

https://meeting.tencent.com/dm/gfdipmPOes1R

会议ID:645 631 478

邀请人(Inviter):李永乐 副教授

摘要(Abstract):

In recent years, the use of deep learning (neural network) potential energy surface (NNPES) in molecular dynamics simulation has experienced explosive growth as it can be as accurate as quantum chemistry methods while being as efficient as classical mechanic methods. However, the development of NNPES is highly non-trivial. In particular, it has been troubling to construct a dataset that is as small as possible yet can cover the target chemical space. In this work, an ESOINN-DP method is developed, which has the enhanced self-organizing incremental neural-network (ESOINN) and a newly proposed error indicator at its core. With ESOINN-DP, one can construct the NNPES with little human intervention, and this method ensures that the constructed reference dataset covers the target chemical space with minimum redundancy. The performance of the ESOINN-DP method has been well validated by developing neural network potential energy surfaces for water clusters and by de-redundancy of a sub-data set of the ANI-1 database. We believe that the ESOINN-DP method provides a novelty idea for the construction of NNPES and especially, the reference datasets, and it can be used for MD simulations of various gas-phase and condensed-phase chemical systems.

报告人简介:

朱通,2013年博士毕业于华东师范大学精密光谱科学与技术国家重点实验室,2016-2018年台湾中央研究院访问学者,现为华东师范大学化学与分子工程学院副教授,上海纽约大学兼职副教授。主要研究方向为采用量化计算及分子动力学模拟研究复杂化学体系的结构与性质,包括金属离子与蛋白质/核酸的相互作用和碳氢燃料的燃烧反应机理。


上一条:物理学科Seminar第573讲:袁若石(2021年11月29日10:00)
下一条:物理学科Seminar第571讲:闻瑾(2021年11月30日19:00)