所在位置: 首页 > 师资队伍 > 教师队伍 > 正文 >
教师个人主页-尹鑫茂
发布人:  张晓智  发布时间:  2022-02-22  浏览量:   关闭

663D

姓名:

尹鑫茂

职称/职务

教授/超导与凝聚态物理所所长

博导/硕导:

硕导、博导

通讯地址:

上海市宝山区上大路99号E楼427

E-mail:

yinxinmao@shu.edu.cn

研究方向

量子材料的光谱学研究

课题组网站

https://www.x-mol.com/groups/yinxinmao

个人简况

国家级人才。2006年因奥林匹克物理竞赛一等奖保送至浙江大学竺可桢学院(本科)。之后以浙大物理专业前三的成绩拿到博士全额奖学金而留学于新加坡国立大学物理系。于2020年上海市海外高层次人才计划引进回上海大学物理系,2021年获批国家级人才计划,2022年获上海科技青年35人引领计划,2023年获江苏扬州领军人才计划。在新加坡同步辐射光源(国家实验室)工作十余年。曾指导研究生发表影响因子15以上的高水平论文10多篇,包括一篇影响因子60的。本组优秀学生可推荐去新加坡留学或深造。

研究领域为量子材料的谱学研究。利用多种谱学技术对物体中复杂的电荷-自旋-轨道-晶格相互耦合作用及演变过程进行研究,从而对材料的超导、磁性、量子相变等宏观物理性质,以及电子结构、自旋变化、量子态准粒子(包括等离子、激子、极化子等)激发等微观物理性质进行信息解析。近5年来在国际一流期刊上发表论文70余篇,包括PRL,APR,Science Advances,Nature Communications等顶级期刊,多项研究被ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today等专业新闻媒体报道。研究成果多次被杂志选为封面文章。同时是多个知名国际期刊的特邀审稿人。曾在Wiley(国际三大学术出版商)出版2本此领域顶级英文专著。

研究兴趣与主持项目

 非常规超导及关联氧化物的光谱学及STM研究

 二维量子材料的光谱学及STM研究

 新型异质结界面电子信息的光谱学研究

 新型量子态准粒子的探索和光谱学研究


 主持项目与荣誉:

 2023年上海大学理学院优秀研究生导师

 2023年上海大学本科招生宣传工作“特别贡献荣誉称号”

 2023年上海大学理学院优秀科研工作者

 2023年国家自然科学基金面上项目

 2023年江苏扬州领军人才计划

 2022年上海科技青年35人引领计划

 2022年上海大学研究生精品课程改革项目

 2022年上海大学本科生全程导师进书院精品项目

 2022年度上海市教育委员会的“记功”个人称号

 2021年国家自然科学基金优秀青年(海外)

 2021年度上海市教育委员会的“记功”个人称号

 2021年上海大学高水平项目-一流研究生教育建设

 2020年上海市海外高层次领军人才项目

教育及工作经历

 2006 - 2010 本科, 浙江大学, 竺可桢学院-物理

 2010 - 2015 博士, 新加坡国立大学, 物理

 2014 - 2020 兼职研究员, 新加坡同步辐射光源

 2014 - 2020 研究员, 新加坡国立大学, 物理系

 2021 - 至今 教授(国家级海外高层次人才),上海大学, 物理系

近年代表性成果

国际著名出版社Wiley出版的英文专著

1. Introduction to Spectroscopic Ellipsometry of Thin Film Materials. WILEY-VCH. April, 2022. ISBN: 978-3527349517. https://news.shu.edu.cn/info/1013/64175.htm

2. Two‐Dimensional Transition‐Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics.  WILEY-VCH. December, 2023. ISBN: 9783527350643. DOI:10.1002/9783527838752. https://www.shu.edu.cn/info/1055/324075.htm

代表性的高水平论文

28. Uncovering an Interfacial Band Resulting from Orbital Hybridization in Nickelate Heterostructures. arXiv:2404.18412 (2024)

27. Realization of a Two-Dimensional Lieb Lattice in a Metal-Inorganic Framework with Flat Bands and Topological Edge States.   arXiv:2404.18430 (2024)

26. Tunable Collective Excitations in Epitaxial Perovskite Nickelates. arXiv: (2024)

25. Optical detection of small polarons in vanadium dioxide and their critical role in mediating metal-insulator transition.  arXiv:2312.17419 (2024)

24. LaAlO3/SrTiO3 Heterointerface: 20 Years and Beyond. Advanced Electronic Materials 102300730 (2024).

23. Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy. Applied Physics Reviews 10,031406 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/313584.htm

22. Self-passivated freestanding superconducting oxide film for flexible electronics. Applied Physics Reviews 10 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/312574.htm

21. Orbital hybridization-driven charge density wave transition in CsV3Sb5 kagome superconductor. Advanced Materials 35, 2209010 (2023). https://www.shu.edu.cn/info/1055/292733.htm

20. Two-dimensional charge localization at the perovskite oxide interface. Applied Physics Reviews 9, 031405 (2022). Selected as Featured Article. https://news.shu.edu.cn/info/1013/65261.htm

19. Recent Developments in 2D Transition Metal Dichalcogenides: Phase Transition and Applications of the (Quasi-)Metallic Phases. Chemical Society Reviews 50, 10087-10115 (2021). Selected as Cover. https://news.shu.edu.cn/info/1013/61884.htm

18. Observation of perfect diamagnetism and interfacial effect on the electronic structures in Nd0.8Sr0.2NiO2 superconducting infinite layers. Nature Communications 13, 743 (2022). https://news.shu.edu.cn/info/1013/63725.htm

17. 1D chained structure in quasi-metallic phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews 8, 011313 (2021) (invited review). Selected as Featured Article. https://news.shu.edu.cn/info/1013/61067.htm

16. Dynamic Segregation of Reduced Ruddlesden-Popper Sr2NiO3 and SrNi2O3 Phases during SrNiO3 Epitaxial Growth. Science Advances 7(10), eabe2866 (2021).

15. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Physical Review Letters 125, 147003 (2020)

14. Interfacial oxygen-driven charge localization and plasmon excitation in unconventional superconductors. Advanced Materials 32, 2000153 (2020). Selected as Back Cover.

13. Anisotropic collective charge excitations in quasimetallic 2D transition-metal dichalcogenides. Advanced Science 7 (10), 1902726 (2020). Selected as Inside Cover. It was reported in many science news (Anisotropic plasmons in quasi-metallic 2D materials), such as Phys.Org, NewsBeezer, Knowledia New, QNewsHub.

12. Electronic Modulation in Site-Selective Occupation of Quasi-2D Triangular-lattice Cs2CuCl4-xBrx Perovskite. ACS Appl. Mater. Interfaces. 12 (3) 4114-4122 (2020).

11. Quantum correlated plasmons and their tunability in undoped and doped Mott-insulator cuprates. ACS Photonics 6(12), 3281-3289 (2019).

10. Modulation of new excitons in transition metal dichalcogenide-perovskite oxide system. Advanced Science 6 (12), 1900446 (2019). Selected as Frontispiece Cover.

9. Three-dimensional resonant exciton in monolayer tungsten diselenide actuated by spin-orbit coupling. ACS Nano 13 (12), 14529-14539 (2019).

8. Unravelling High-Yield Phase-Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science 6 (7), 1802093 (2019). Selected as Frontispiece Cover). It was reported in many science news (Phase transition dynamics in two-dimensional materials), such as ScienceDaily, Phys.Org, EurekAlert AAAS.

7. Oxygen Electromigration and Energy Band Reconstruction Induced by Electrolyte Field Effect at Oxide Interfaces. Physical Review Letters 121, 146802 (2018)

6. Modulation of manganite nano-film properties mediated by strong influence of strontium titanate excitons. ACS Applied Materials & Interfaces 10 (41), 35563-35570 (2018).

5. The Mechanism of Electrolyte Gating on High-Tc Cuprates: The Role of Oxygen Migration and Electrostatics. ACS Nano 11 (10), 9950 (2017)

4. Tunable Inverted Gap in Monolayer Quasi-Metallic MoS2 Induced by Strong Charge-Lattice Coupling. Nature Communications 8, 486 (2017). This work was highlighted in https://doi.org/10.1557/mrs.2017.246. It was reported in many science news (Scientists unravel new insights into promising semiconductor material), such as ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today News, AZoMaterials, EE World Online.

3. Unraveling the magnetic coupling in the interface of the exchange-biased IrMn/Permalloy multilayers. Materials Letters 187, 133-135 (2017).

2. Coexistence of Midgap Antiferromagnetic and Mott States in Undoped, Hole- and Electron-Doped Ambipolar Cuprates. Physical Review Letters 116, 197002 (2016).

1. Unraveling the interplay of electronic and spin structures in controlling macroscopic properties of manganite ultra-thin films. NPG (Nature Publishing Group) Asia Materials 7, e196 (2015).

                                      更新于2024.4.30

上一条:教师个人主页-戴晔
下一条:教师个人主页-马国宏